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An approximate solution for the acoustic coupling factor (the diffraction correction function) 
from a focused transducer to a fiat plate and back to the transducer is provided. This function 
is useful for system calibrations where a pulse-echo system or transmit-receive system is used. 
Numerical solutions are provided for the important case where the fiat plate is placed near the 
focal plane of the transducer. The solution for a fiat disk transducer is obtained as a limiting 
case. Experimental evidence for a focused transducer is provided. 

PACS numbers: 43.20.Fn, 43.20.Rz, 43.20.Bi 

INTRODUCTION 

The acoustic coupling factor (diffraction correction 
function) from a transducer to a fiat reflector and back to 
the transducer is needed when the reflected signal from a 
fiat plate is used to measure the system transfer function of 
a transmit-receive system, as in the case of a backscatter 
measurement system. For a fiat disk transducer, this func- 
tion has been solved by a number of authors, including 
Lommel, • Huntington et al., 2 Williams, 3 and Seki et al. 4 
Extensive numerical integration of these results has been 
provided by Khimunin 5'6 and Benson and Kiyohara. 7 The 
solution for a fiat disk transducer with transient excitation 

has been reported by Rhyne. 8 An exact solution to the 
steady state problem was obtained by Williams 3 in the in- 
tegral form as 

Dœ(z;f) = l - ( 4/sr)exp'(j kz) 
Jo 

+4a • cos • O) ]sin • 0 dO, 

exp[--jk(• 

(1) 

where z/2 is the distance from the transducer to the flat 

plate, and 0 can be regarded as a dummy variable for 
integration. For ka• 1, Eq. ( 1 ) was reduced by Rogers and 
Van Buren 9 to 

Dœ(z;f) = 1 -exp(-j2,r/S) [Jo(2•r/S) 

+jJi (2•r/S) ], (2) 

where $=2•rz/ka • is the normalized distance from the 
transducer to the flat plate. 

In many instances, however, it is more desirable to use 
a focused transducer and it is the diffraction correction 
function for such a transducer that will be discussed. An 

exact solution to this problem in integral form will be 
shown and an explicit approximate solution will also be 
shown, along with numerical presentations. The solution 

for the flat disk transducer is obtained as a limiting case of 
the general solution. Experimental data from a focused 
transducer are provided. 

I. DERIVATION OF THE DIFFRACTION CORRECTION 
FUNCTION 

A pulse-echo system is shown in Fig. l. The distance 
from the transducer (the transmitter) to the fiat reflector is 
denoted by z/2. The receiver can be regarded as the mirror 
image of the transmitter, having the same radius a, and 
geometrical focal length r 0. The half spread angle of the 
transducer element, at, is calculated from a=arcsin(a/ro). 
The focusing factor of the transducer is defined as 
Gp---ka2/2ro=ka sin a/2. The medium has density P0 and 
sound speed c o . 

The effective pressure reflected back to the transmitter 
by the fiat plate,/•(z;f), is equal to the average of the 
radiation field of the transmitter on the receiver surface, 
i.e., 

1 

ff(z;f)=•--•a f fsPl(r,O)dS:, (3) 
where Pl is the complex pressure distribution of the trans- 
mitter. This expression can be written as a plane traveling 
wave, modified by a correction term, i.e., 

/•(z;f) =P0 exp[ j(wt--kz) ] DF(z;f), (4) 

where P0 is the pressure amplitude on the surface of the 
transmitter, and DF(z;f) is the desired diffraction correc- 
tion function. A subscript F, which stands for "focused," is 
used to distinguish this function from the Lommel diffrac- 
tion function for a flat transducer. 

The pressure distribution of the transmitter can be de- 
rived from the velocity potential by 

Pl ( r,O) = Po Oc)( r,O) /& = j poroc)( r,O ). (5) 
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FIG. !. Coordinate systems used for analysis. The flat plane is positioned 
z/2 away from the transmitter. The receiver can be considered as the 
mirror image of the transmitter. 

r' ={zz--2•[ (z/ro--2) (2--cos 02--cos 0o) + 1 

-- cos 02 cos 0 o + sin 02 sin 0o cos q•o] }•/2- ( 11 ) 

Letting Uo=sin Oo/sin a, and Us=sin 0ffsin a, Eq. (11) 
becomes 

r' =z--sin s a( r2/z) [ (z/ro-- 1) ( Uo• + U22)/2 

+ UoUs cos q•01 +O[s in4 a] +-". (12) 

Replacing r' in the exponent of Eq. (8) by the first two 
terms of Eq. (12) and replacing r' in the denominator by 
the first term of Eq. (12) (similar to the Fresnel approxi- 
mation), Eq. (8) becomes 

ka 2 I I z 

exp[ d -•- (•-- 
When the size of the transmitter is larger than the wave- 
length (ka}l), the velocity potential of the transmitter 
can be calculated by the Green's function method (the 
Rayleigh formulation) 

f J's exp[j(cot--kr')] qb(•',0) = (Uo/2rr) r' d$•, (6) 
1 

where u 0 is the normal velocity on the transmitter surface, 
r' is the distance from a point source on the surface of the 
transmitter to the point of observation. Defining Po 
= poCu o, we have 

( r,O ) = j (po/ Uo) tcf ( r,O ). (7) 

Combining Eqs. (3) - (7), we obtain the diffraction correc- 
tion function 

DF(z)=j(k/2•r2a2) f fs2dSs f fs• exp[jk(z--r')] 
xd$•. (8) 

Equation (8) is the exact desired solution in integral form. 
The distance from the point source to the point re- 

ceiver, r', is best described by two spherical coordinate 
systems with origin O• located at the geometrical focus of 
the transmitter, and origin 02 located at the geometrical 
focus of the receiver, as shown in Fig. 1. In system 1, the 
point source r s can be expressed as (ro,Oo,cPo), and the 
point receiver r n can be expressed as (r•,O•,O). Then 

r' = { • + • + 2rlro( cos O• cos 0o 

--sin 0• sin 00 cos q00)} •/2. (9) 

The point receiver r a can also be expressed in system 2 as 
(ro,02,0), where 

r• cos 02 =ro cos 02+ (z--2ro), r• sin O•=r o sin Oz. 
(10) 

Eliminating rl and 0• from Eq. (9) by use of Eq. (10), we 
find 

as 

X exp j -- U 2 U o cos q•o dq00- (13) 
=0 • 

•t us define two nondimension• parletern Y and Z 

Y =-- ( kaS /z ) ( z/ro- 1 ), 

Z------kaS/z, (14) 
and integrate over •0 explicitly, Eq. (13) then becomes 

DF(z)=j2z f;z_O f;o=o eXp(j Y • 2 ( + u;) ) 
XJo(ZU2Uo) Us Uo dU2 duo. (15) 

The two-parameter problem similar to that given in 
Eq. (15 ) has been discussed in detail by Lommel.• Let 

/o( ¾,zus) = fo:O 
then 

(16) 

i y 

Dl:(z;f) =J2Z •tlz=o exp( j • U•2)Io( Y, ZUz) U2 dUz ß 
(17) 

Equation (16) can be solved by using Eqs. (35) and (36) 
in Reft 10 to obtain 

Io( Y, ZUs) =j{exp(--jZ2U•2/2Y) -- exp (j ¾/2) 

X [Vo( Y, ZU2) --jvt( r, zus) ]}/Y, 

where 

Vo( Y, ZUz) = 

v• ( Y, ZUs) = 

(18) 

n=o (19) 
oo 

• (--1)n(zu2/y)2n+IJ2n+i(ZU2), 
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are the zeroth and first-order Lommel functions of the 

second kind. Substituting Eqs. (18) and (19) into Eq. 
(17), we have 

Z (exp [ j ( Y/2 - Z2/2 Y) ] - 1 OF(z;f) = ---• j(r/2_Z2/2y) 

-exp(j Y)I2( Y,Z) ), (20) 
where 

Iz(Y'Z)=2 =o exp --j•-(1--U•) [%(Y, ZU2) 
--jvt( Y, ZU2) ] U2 dU2. (21) 

The details for the reduction of Eq. (21) will not be 
given here. It is sufficient to state that by substituting 
Eq. (19) into F.q. (21), a summation of complex integrals 

in the form of f[r2=oU•+lJ,,(ZU2)exp[ -- j(Y/2)(1 
-- U•)]dUz for n>O results and their solutions can be de- 
rived from similar expressions given in the text by Gray 
and Mathews. m After some lengthy manipulation, Eq. 
(20) becomes 

1 [exp[j(Z/2)(X--1/X)]--I 
Dr(z;f) = --• [ j (Z/2) (X-- l/X) 

--exp(jZX) [So(X,Z) --jS• (X,Z) ] ), 
(22) 

where X= Y/Z----z/r o-- 1, and 

2 Xp)j2n+l(Z)] ' n=O p= --2n,2 
(23) 

S•(X,Z)=• • (--1)" • X • J2•+2(Z) . n=0 p=-- (2n+ 1),2 

Equation (22) is the solution of the diffraction correction 
function for a focused transducer when the flat plate is 
positioned at z/2 away from the transmitter. The argu- 
ments of D,•(z;f) in Eq. (22) have been changed to ex- 
press its dependence on the two nondimensional parame- 
ters X and Z explicitly. 

When the fiat plate is positioned at the geometrical 
focal plane (z=2ro), so that X= 1 and Z=ka•/2ro---Gp, 
functions So(X,Z) and St(X,Z) reduce to Jo(Z) and 
J•(Z), respectively, and Eq. (22) becomes 

Dr(z = 2ro;f) = -- { 1 -- cxp (jGp) [Jo(G•,) --J Jr (Gp) l }. 
(24) 

Notice that Z here is equal to the focusing factor of the 
transducer, Gp. 

When r 0 is allowed to approach infinity, X= -- ! holds 
for all values of z. The functions So(X,Z ) and St(X,Z) 
reduce to Jo(Z) and --Jr(Z), respectively, and Eq. (22) 
reduces to the solution for a fiat disk transducer given in 
Eq. (3), where 2•'/S is used in place of Z. 

1.0 

0.8 

0.4 

0.2 

FIG. 2. Amplitude of the acoustic coupling factor ] Dt:(z;f) [ as a func- 
tion of focusing factor G o when the flat plate is positioned in the focal 
plane (z' -- 1 ). Dashed lines represent the approximate solutions given in 
Eqs. (25) and (26). 

II. NUMERICAL PRESENTATION 

The amplitude of D,,(z;f) can be calculated from Eq. 
(22) readily as a function of X and Z. For comparison 
purposes, however, it is more advantageous to treat 
D,•(z;f) as a function ofz'=z/2ro and Gp, where z' is the 
distance from the transducer to the fiat plate (z/2) nor- 
malized by the geometrical focal length r o, and Gp is the 
focusing factor of the transducer defined earlier. Then 
X•2z'--l, and Z•Gf'z'. When the fiat plate is at the 
focal plane (z'= 1 ), X= 1, and Z= Gp. 

The numerical value of IDF(z;f) l when z'=l is 
shown in Fig. 2. It is not a monotonically increasing func- 
tion of Gp. For Gp>rr, I can be replaced by the 
following empirical approximation 

ID•:(z----2ro;f)[=exp(-- 1/•p), Gp>rr. (25) 
In the range specified, the relative error of the approxima- 
tion in Eq. (25) is less than 1%. For Gp< 1, ID(z;f) l 
can be replaced by the following empirical approximation 

ID•(z=2ro;f) l=Gf2, G•< 1. (26) 

The condition Gp < 1 indicates that the geometrical focal 
length of the transducer is larger than the Rayleigh dis- 
tance of a flat transducer with the same frequency and size. 
Equation (26) states that the pressure distribution of the 
transducer has reached spherical spreading at the geomet- 
rical focal plane for such a combination of frequency and 
size. 

Figure 3 shows the variation of ]D•,(z;f) I as a func- 
tion of z' for several values of Gp. For high focusing fac- 
tors, I Dj,(z;f) ] diverges rapidly from its value in the focal 
plane. This indicates that the positioning of the reference 
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FIG. 3. Amplitude of the acoustic coupling factor I DF(z;f) [ as a func- 
tion of normalized distance z' for focusing factors Gp=2.5, 5, 10, and 20. 
Experimental data are shown for Gp=5 (f=3.73 MHz) (0) and G•= 10 
(f=7.47 MHz) (•). The transducer parameters: a=6.35 mm and 
ro=63.5 min. 

plate is crucial at high frequencies. This fact is emphasized 
in Fig. 4 where the numerical values of IDF(z;f) l are 
compared for z'=0.5, 0.9, 1.0, and 1.1. At Gp=10 and 
z'--0.9, I DF(z;f) I differs from its value in the focal plane 
by more than 20%. This difference increases as the plate is 
moved further away from the geometrical focal plane. At 
z'=0.5, for example, X=0, and Z=2Gp. Equation (22) 
fails to converge for this special case. For these parameters, 
Eq. (8) becomes 

1.0 

0.4 

0.0 i 
0 5 10 15 2(I 

Gp=kasinet/2 

FIG. 4. Amplitude of the acoustic coupling factor I Dr(z;f) I as a func- 
tion of focusing factor Gp for normalized distances z'=0.5, 0.9, 1.0, 
and 1.1. 

II Tone burst 

Power 
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] T/Rswitch I , *Vøut 
I I Digitizing 
ii oscilloscope 
/ l•Trigger 
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•'g-50 
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FIG. 5. Schematic diagram of the experimental apparatus. The trans- 
ducer was driven by a gated tone burst; the reflected signal from the 
stainless steel plate was acquired by the oscilloscope. Alignment and po- 
sitioning systems are not shown. The input waveform before the power 
amplifier and the output waveform for G•= 10 (f=7.47 MHz) at z'= 1 
are also shown. 

DF(Z=ro;f) 

= i2z Jo( ZU2Uo) U2Uo dU2 duo 
2=0 =0 

= -2j [ 1 -Jo(Z) ]/z 

= -j[ 1 -J0(2Gp)]/G•,. (27) 
The amplitude of this function, also plotted in Fig. 4, 
shows the loss of reflected acoustic energy through inter- 
ference at high frequencies. 

III. EXPERIMENTAL EVIDENCE 

An experiment was performed to test the theory pre- 
sented above. A schematic diagram of the experimental 
apparatus is shown in Fig. 5. A gated tone burst, generated 
by a function generator (model HP 8116A, Hewlett- 
Packard GmbH, Germany) and amplified 55 dB (model 
A150, ENI, Inc., Rochester, NY), was used to excite the 
focused transducer. The transducer was a focused, broad- 
band transducer (model V309, Panametrics, Waltham, 
MA), with an active element a=6.35 mm in radius, and a 
geometrical focus ro=63.5 mm. The flat plate was made of 
type 304 stainless steel (model TB7545-5, Panametrics, 
Waltham, MA), with a thickness of 23 mm. A goniometer 
was used to adjust the angle between the transducer and 
the plate so that total reflected power was maximum when 
the plate was positioned in the focal plane. A digitally 
controlled positioning system (UniSlide© series, Velmex 
Inc., East Bloomfield, NY) with a precision of 0.01 mm 
was used to move the plate along the axis of the transducer. 
Via a transmit/receive (T/R) switch (model RDX-6, 
RITEK Inc., Warwick, RI), the reflected signal was con- 
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neeted directly to a digitizing oscilloscope (model 9430, 
LeCroy Corporation, Chestnut Ridge, NY}. The radio- 
frequency (rf} signal was digitized at a 100-MHz sampling 
rate with 10bit precision. An antialiasing filter with a cut- 
off frequency of 45 MHz was used before digitization. 
Time-domain averaging of 100 traces of digitized rf signal 
was used for each measurement to reduce broadband noise. 

The digitized rf signal was transferred via an IEEE 488 
interface to a personal computer for storage and process- 
ing. The envelope of the rf signal was calculated from the 
amplitude of the complex analytic function associated with 
the rf signal.• 

The received signal at the oscilloscope when the fiat 
plate is positioned at a distance z/2 away from the trans- 
ducer can be written as 

Vout(Z;t) = Via,ampX(f)FR(f)X(f ) 

Xexp[ j (•ot--kz) l Dr(z;f), (28) 

where V•,.amp was the amplitude of electrical signal driving 
the transducer, X(f) was the electroacoustical coupling 
factor of the transducer, and Fn(f) was the filter function 
of the receiving circuitry. The filter function Fn(f), which 
was used to remove the requirement that the transmit- 
receive circuitry be symmetric, could have included the 
gain function if any amplification circuitry was used be- 
tween the T/R switch and the oscilloscope. The combina- 
tion IX2(f)Fn(f) l, which is a function of frequency only, 
is the system transfer function which needs to be deter- 
mined for the calibration of pulse-echo systems. It is clear 
from Eq. (28) that system calibration is accomplished if 
the amplitude of Vout(Z;t) is measured and I DF(z;f)] is 
calculated from Eq. (8} or Eq. (22). 

To completely verify the theory presented in Sees. I 
and II, it is necessary to determine the system transfer 
function accurately and independently. This is often diffi- 
cult, if not impossible. For a particular frequency, how- 
ever, the system transfer function is a constant, and the 
variation in the amplitude of Vout(2;/) as a function of z 
can be used to verify the theoretical results. 

The input waveform before amplification and the out- 
put waveform for G•,= 10 when the fiat plate was posi- 
tioned in the focal plane are shown in Fig. 5. A total of 12 
acoustic cycles were used. Steady state was reached after 
roughly r 0 sin 2 a/Co=0.42/zs, which corresponds to the 
difference in propagation delays from a point on the trans- 
mitter to a point on the "image" receiver. 

Shown in Fig. 3 are the amplitudes of the reflected 
signal as functions of normalized position of the flat plate 
for two focusing factors, G•,= 5 and 10, which correspond 
to f----3.73 and 7.47 MHz, respectively. Arbitrary multi- 
plicative constants were used to correct for the unknown 
system transfer function. Good agreement between theory 
and the experimental data was observed near the focal 
plane. 

It was also observed theoretically and experimentally 
that, for a fixed frequency, the maximum in IDF(z;f) l 
occurs farther away from the transducer surface than the 
on-axis pressure maximum, which is always before the geo- 

metrical focus. For the transducer used in this experiment, 
the pressure maximum was found at 47.7 mm away from 
the transducer surface at 3.73 MHz, corresponding to a 
normalized distance of 0.75; the pressure maximum was 
found at 57.4 mm away from the transducer surface at 7.47 
MHz, corresponding to a normalized distance of 0.90. 

IV. DISCUSSIONS AND CONCLUSION 

Some approximations were used in the derivation. The 
leading term of error in the phase angle k(z--r') is 

A[ k(z--r') ] = ( ka4/4•){ [ (z'-- 1/2) ( U•0+ U•) 

- ') + 1/2)( 

-t-UoU2 cOS •p0] 2/(4z'3) }, (29) 

and the necessary condition for the Fresnel-type approxi- 
mation to be valid is IA[k(z-r')]lg•r. If we limit our 
discussion to z'> 0.5 (since most of the measurements are 
made near or at the focal plane), we find I A[k(z 
--r')][ < kaS/4r3 o. The necessary condition for the approx- 
imation to be valid is therefore ka4/4•g•r, or 

G o sin 2 a/2•r• 1. (30) 
This condition is satisfied by a variety of frequency-size 
combinations for transducers of practical interest. 

It was also assumed that the flat plate is perfectly re- 
flective, i.e., its reflection coefficient is 1. For a flat inter- 
face, the pressure reflection coefficient is given by Snell's 
law as R = 1 --211 + (pC/poCo)½OS 01, ]- l, where poc 0 is the 
acoustic impedance of the medium, pc is the acoustic im- 
pedance of the flat plate, and 0in is the angle of incidence. 
Strictly speaking, this reflection coefficient should be in- 
serted in the integrand in Eq. (8) as a multiplicative factor. 
The numerical value of cos 0in, however, varies only 
slightly when the flat plate is sufficiently away from the 
transmitter. For example, for z'> 0.5, we have l>cos 
•1 --2 sin 2 a. For weakly focused transducers, sin 2 a<l. 
This condition has already been implied by Eq. (30). Al- 
lowing cos 0•= 1, the reflection coefficient can be treated 
as a constant, equal to the reflection coefficient at the 
medium-plate interface with normal incidence. This coef- 
ficient can be directly inserted in the front of Eq. (8) as 
well as in the front of the final solution given by Eq. (22). 
It must be stressed here that the nonperfect reflector must 
be of sufficient thickness so that the back wall echo is 

separated from the front wall echo. 
Thus we have provided the acoustic coupling factor 

(the diffraction correction function) from a focused trans- 
ducer to a fiat plate and back to the focused transducer as 
a function of two nondimensional parameters X and Z, or 
alternatively, z' and Gp. This function is required for the 
system calibration of a transmit-receive system. Approxi- 
mate forms of the function have been provided for z' = 1, 
when the fiat plate is positioned in the focal plane. Numer- 
ical evaluation of the function indicates that positioning of 
the flat plate for high focusing factors is crucial. The theory 
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includes the solution for a flat disk transducer as a limiting 
case. Experimental results have been provided to support 
the theoretical solution. 

In Secs. II and III, only the amplitudes of the diffrac- 
tion correction function were presented. The phase of the 
diffraction correction function can be computed from Eq. 
(8) or Eq. (22) and can be used for the accurate measure- 
ment of phase velocity in the medium with a focused trans- 
ducer. It is worthwhile to point out that the theoretical 
solution provided is also valid when intrinsic absorption of 
the medium is included. In that case, the wave number k 
should be replaced by k--ja, where a is the absorption 
coefficient of the medium. The amplitude of the diffraction 
correction function can then be used for the accurate mea- 

surement of the absorption coefficient of the medium with 
a focused transducer. The phase of the diffraction function 
can be used for the accurate measurement of the phase 
velocity in the medium with a focused transducer. 
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